Nos tutelles

CNRS

Rechercher





Accueil > Français > Annuaire > Turbulence-Plasma

ESCANDE Dominique

Curriculum vitae

ESCANDE Dominique
Directeur de Recherche Emérite au CNRS
dominique.escande (at) univ-amu.fr
Tél : +33 4 91 28 89 82

Domaines de Recherche
Foundations and methods of plasma physics
Wave-particle interactions in plasmas
Hamiltonian dynamics, deterministic chaos
Thermonuclear fusion by magnetic confinement
Self-organization of the reversed field pinch
Hybrid fusion-fission reactor

Born in 1948, study of physics at Ecole Polytechnique, Paris (promotion 1967) and Université Paris-XI (DEA 1971), Doctorat ès Sciences Physiques, Université Paris-XI (1978), CNRS researcher at Ecole Polytechnique, maître de conférences (assistant professor) en physique at Ecole Polytechnique (1981-1992), sabbatical at Institute for Fusion Studies, Austin TX (1983-1984), consultant at X-Recherche Service (1987-1992), creation with F. Doveil of Equipe Turbulence Plasma at PIIM in 1988 and direction of the team, CNRS researcher at Université de Provence (1988-1992), Director of PIIM (1992), head of Département de Recherches sur la Fusion Contrôlée at CEA-Cadarache (1992-1996), chairman of the EURATOM Fusion Technology Steering Committee-Implementation (1995-1996), advisor of Consortium RFX, Padua, Italy (full time from 1996 to 1998, part time since), CNRS researcher at Université de Provence and Aix-Marseille Université (since 1998), now as Directeur de Recherche Emérite.

Publications choisies

Most important ones with one or two asterisks

Papers

Saturation of the gentle bump instability in a random plasma,
D.F. ESCANDE,
Phys. Rev. Letters, 35, 995 (1975).

**Renormalization method for computing the threshold of the large-scale stochastic instability in two-degrees-of-freedom Hamiltonian systems,
D.F. ESCANDE, F. DOVEIL,
J. Stat. Phys. 26, 257 (1981).

Localization of waves in a fluctuating plasma,
D.F. ESCANDE & B. SOUILLARD,
Phys. Rev. Lett. 52, 1296 (1984).

**Stochasticity in classical hamiltonian systems : Universal Aspects
D.F. ESCANDE
Phys. Reports 121, 165-261 (1985).

*Slowly pulsating separatrices sweep homoclinic tangles where islands must be small : an extension of classical adiabatic theory,
Y. ELSKENS & D.F. ESCANDE
Nonlinearity 4, 615 (1991).

Infinite resonance overlap : a natural limit for hamiltonian chaos
Y. ELSKENS & D.F. ESCANDE
Physica D 62, 66 (1993).

Self consistent check of the validity of Gibbs calculus using dynamical variables
D.F. ESCANDE, H. KANTZ, R. LIVI & S. RUFFO
J. Stat. Phys. 76, 605 (1994)

**Intuitive and rigorous derivation of spontaneous emission and Landau damping of Langmuir waves through classical mechanics
D.F ESCANDE, S. ZEKRI & Y. ESLKENS
Phys. Plasmas 3, 3534 (1996).

*Origin of diffusion in Hamiltonian dynamics
D. BENISTI & D.F. ESCANDE
Phys. Plasmas 4, 1576 (1997).

Finite range of large perturbations in Hamiltonian dynamics
D. BENISTI & D.F. ESCANDE
J. Stat. Phys. 92, 909 (1998)

**Quasi single helicity reversed field pinch plasmas
D.F. ESCANDE, P. MARTIN, S. ORTOLANI, A. BUFFA, P. FRANZ, L. MARELLI, E. MARTINES, G. SPIZZO, S. CAPPELLO, A. MURARI, R. PASQUALOTTO & P. ZANCA
Phys. Rev. Lett. 85, 1662 (2000)

**Chaos healing by separatrix disappearance and quasisingle helicity states
D.F. ESCANDE, R. PACCAGNELLA, S. CAPPELLO, C. MARCHETTO, et F.
D’ANGELO
Phys. Rev. Lett. 85, 3169 (2000)

*Bifurcation in viscoresistive MHD : The Hartmann number and the reversed field pinch
S. CAPPELLO and D.F. ESCANDE
Phys. Rev. Lett. 85, 3838 (2000)

Proof of quasilinear equations in the chaotic regime of the weak warm beam instability
D.F. ESCANDE & Y. ELSKENS
Phys. Lett. A302, 110-118 (2002)

Simple and rigorous solution for the nonlinear tearing mode
D.F. ESCANDE & M. OTTAVIANI
Phys. Lett. A323, 278 (2004)

*Dominant electrostatic nature of the reversed field pinch dynamo
D. BONFIGLIO, S. CAPPELLO & D.F. ESCANDE
Phys. Rev. Lett. 94, 145001 (2005)

When can Fokker-Planck Equation describe anomalous or chaotic transport ?
D.F. ESCANDE & F. SATTIN
Phys. Rev. Lett. 99, 185005 (2007)

Validity of quasilinear theory : refutations and new numerical confirmation
N. BESSE, Y. ELSKENS, D.F. ESCANDE & P. BERTRAND
Plasma Phys. Control. Fusion 53, 025012 (2011)

*Necessary criterion for magnetic field reversal in the reversed-field pinch
D. BONFIGLIO, D.F. ESCANDE, P. ZANCA & S. CAPPELLO
Nucl. Fusion 51, 063016 (2011)

*Calculation of transport coefficient profiles in modulation experiments as an inverse
problem
D.F. ESCANDE & F. SATTIN
Phys. Rev. Lett. 108, 125007 (2012)

**Direct path from microscopic mechanics to Debye shielding, Landau damping, and wave-particle interaction
D.F. ESCANDE, Y. ELSKENS, & F. DOVEIL
Plasma Phys. Control. Fusion 57, 025017 (2015)

*Uniform derivation of Coulomb collisional transport thanks to Debye shielding
D.F. ESCANDE, Y. ELSKENS, & F. DOVEIL
J. Plasma Phys. 81, 30581010157 (2015)

N-body description of Debye shielding and Landau damping
D.F. ESCANDE, F. DOVEIL & Y. ELSKENS
Plasma Phys. Control. Fusion 58, 014040 (2016)

*Contributions of plasma physics to chaos and nonlinear dynamics
D.F. ESCANDE
Plasma Phys. Control. Fusion 58, 113001 (2016)

*From thermonuclear fusion to Hamiltonian chaos
D.F. ESCANDE
The European Physical Journal H 43, 397-420 (2018) in the dedicated issue “Plasma physics in the 20th century as told by players”)

** Basic microscopic plasma physics from N-body mechanics
A tribute to Pierre-Simon de Laplace
D. F. ESCANDE, D. BÉNISTI, Y. ELSKENS, D. ZARZOSO, F. DOVEIL
Reviews of Modern Plasma Physics 2, 9 (2018)

Book

**Microscopic dynamics of plasmas and chaos
Y. ELSKENS & D.F. ESCANDE
Institute of Physics, Bristol, 2003, 328 pages.

Chapters of books

Wave–particle interaction in plasmas : A qualitative approach
D.F. ESCANDE
In « Long-range interacting systems », edited by T. Dauxois, S. Ruffo & L. F. Cugliandolo, Oxford University Press 2010, p. 469.

What is a Reversed Field Pinch ?
D.F. ESCANDE,
In « Rotation and momentum transport in magnetized plasmas », edited by P.
H. Diamond, X. Garbet, P. Ghendrih, and Y. Sarazin, World Scientific 2015, p. 247.
https://hal.archives-ouvertes.fr/hal-00909102/document

*How to face the complexity of plasmas ?
D.F. ESCANDE,
In "From Hamiltonian chaos to complex systems" edited by X. Leoncini and M. Leonetti, Springer/Berlin 2013, p. 109
https://hal.archives-ouvertes.fr/hal-00702276v3